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Abstract. A generalisation of the recurrence method of series analysis is developed which 
permits the analysis of power-law confluent singularities in a function from its expansion in a 
power series. This method yields directly critical points and associated exponents for each 
element of an array of Kth-order, inhomogeneous, differential equation approximants 
[MO, M , ,  . . . M K ;  t]. Biased approximants are also discussed. Tests are presented which 
show that the method can be superior to the Dlog Pad6 approximant for determining the 
dominant critical exponent in a function known to have confluent singularities, and can yield 
good approximations for the leading confluent exponent. An application to the problem of 
determining correction-to-scaling exponents in 3D spin-co Ising models yields results in 
agreement with other studies. 

1. introduction 

One of the fundamental tasks of series analysis is to predict the analytical and singular 
structure of a function I,/I(z), given the first several terms in its series expansion, 

Techniques for analysing such series have diverse applications throughout theoretical 
physics (see, for example, Van Dyke 1974) and have been of particular importance in 
the theory of critical phenomena (see, for example, Gaunt and Guttmann 1974, Hunter 
and Baker 1973). 

Our understanding of critical phenomena has increased considerably in recent years 
with the development of renormalisation group theory (Wilson and Kogut 1974, Domb 
and Green 1976 and references therein). One of the more striking predictions of the 
theory is that critical point singularities generally have an intrinsic confluent power-law 
nature (Wegner 1972). For example, thermodynamic quantities, such as the magnetic 
susceptibility ~ ( z ) ,  with z an appropriate temperature variable, should behave close to 
a critical point as 

where AO(z ) ,  A , ( z ) ,  A2( z ) ,  . . . are regular at zc, and y1 > y 2 > .  . .. 
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Such confluent singularities have been found rigorously in the triangular lattice king 
model with triplet-spin interactions (Baxter and Wu 1973, 1974, Baxter 1974, Joyce 
1975a, b); by series analysis for spin-s Ising models (Saul et a1 1975, Camp and Van 
Dyke 1975, Camp etal l976);  and in generalised spin models (Golner and Riedel1976, 
Van Dyke and Camp 1975). However, non-analytic confluent corrections are absent in 
the 2D spin-4 Ising model (Barouch et a1 1973), and all presently available series 
evidence (Sykes eta! 1972) suggests their absence in the 3D spin-; Ising model as well. 
Confluent singularity structure of the form (2) had previously been predicted by 
thermodynamic arguments for systems lacking the symmetry properties of spin-systems 
(see Rehr and Mermin 1973 and references therein). 

The interference from confluent singularities can render ineffective conventiona! 
series analysis techniques, e.g. the Dlog Pade approximant, which are best suited for 
functions with strong, isolated, power-law singularities. This has led to the develop- 
ment of several techniques (Baker and Hunter 1973, Moore eta1 1974, Camp and Van 
Dyke 1975), all inherently non-linear, for resolving such confluent singularities. 

The main purpose of this article is to describe a generalisation of the ‘recurrence 
method of series analysis’ (Guttmann and Joyce 1972, Joyce and Guttmann 1973, 
hereafter referred to as I and 11, respectively), which permits a direct analysis of such 
confluent power-law singularities from a given series. In addition we discuss how 
‘biased’ estimates can be obtained, and we have incorporated in our analysis all of the 
possible generalisations of the recurrence method mentioned in I and 11. All of these 
improvements have been implemented into a single FORTRAN program. The general- 
isation to ‘inhomogeneous approximants’ has also been discussed recently by Hunter 
and Baker (1979) and Fisher and Au-Yang (1979). 

In brief, the recurrence method is based on fitting the series coefficients in equation 
(1) to a linear recurrence relation or, equivalently, to the polynomial coefficients of a 
Mth-order differential equation. These differentid equation approximants (or simply 
‘differential approximants’ in the terminology of Fisher) implicitly define approximate 
‘representations’ (cINI,L(z), termed integral approximants by Hunter and Baker, of the 
desired function. Critical points and critical exponents are obtained using standard 
techniques from the theory of differential equations; it is not necessary to fit the 
amplitudes of singularities as in other procedures. By choosing the appropriate degree 
K,  these approximants can often provide a better representation of the singular 
structure of a function than is possible with other methods. Indeed, tests of the 
recurrence method on functions with isolated singularities have shown that i t  is often 
superior to any other for a variety of test functions, with first-order inhomogeneous 
approximants usually performing better (Hunter and Baker 1979) than homogeneous 
second-order approximants (Guttmann 1975). Since many of the currently used 
methods of series analysis (ratio method, Neville extrapolanrs, Pad6 approximants, 
Dlog PadC approximants, etc) are special cases (Hunter and Baker 1979), our general- 
ised recurrence method should have a wide applicability. An application to the analysis 
of spectral densities has already been made by Wheeler et a1 (1974). Furthermore, the 
inherent power and simplicity of the theory permits many additional refinements and 
generalisations. One such generalisation to the case of partial differential approximants 
for functions of two variables has been developed by Fisher and co-workers (Fisher 
1977, Fisher and Kerr 1977, Fisher and Au-Yang 1979). 

The remainder of this paper is organised as follows. In § 2 we give a detailed 
discussion of the recurrence method, together with our generalisation for confluent 
singularity analysis. The method is illustrated in 0 3 for test functions formed from 
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hypergeometric functions, and for the internal energy series of the triplet-spin king 
model. Finally, in 44 the method is applied to the determination of the Wegner 
correction to scaling exponent A l  in the spin-co Ising model, and compared with other 
methods of confluent singularity analysis. 

2. Recurrence method of series analysis 

As descriptions of the recurrence method have appeared previously only in abbreviated 
form, we begin a full review of the method. Our discussion parallels that given in I and 
I1 but includes explicitly all of the possible generalisations and refinements noted there. 
For additional discussion, particularly with respect to first-order inhomogeneous 
approximants, we refer the reader to the papers of Hunter and Baker (1979) and Fisher 
and Au-Yang (1979). 

2.1. Recurrence relations 

We consider a function + ( z ) ,  analytic in some disc 121 < ro, for which the first 15 terms of 
its Taylor expansion about the origin, equation (l) ,  are known exactly. For definiteness 
we assume co # 0, and set c-,  = O(n > 0). The starting point of the recurrence method is 
to force the leading N +  1 coefficients co, c1, . . . , c N ( N  SI?) to satisfy exactly an 
( M  + 1)-term linear recurrence relation, 

Each recurrence relation is determined unambiguously by a set of integers (see also 
equation (16)) 

~Mo,1Ml,...,MK;Ll~[~,Ll (4) 

with K 3 0, Mi 3 - 1 ( i  = 0,  . . , , K ) ,  L z - 1;  the definitions Qi,-j = P- j  sz O( j > 0); and 
the normalisation condition, QK,O = 1. The number of terms in the recurrence relation 
is set by 

M = maxi&& i = 0, . . . , K } .  ( 5 )  

The coefficients {Qi,j,  Pi} are determined by solving the system of linear equations (3), 
{ R M , L [ ~ , ]  = P,, ( n  = 0, . . . , N ) } ,  provided a solution exists, where 

N = + K + L -  N6 (6) 
K 

i = O  
z = C  Mi (7) 

and N6 is the number of additional independent constraints on the coefficients {Qi,j, Pj }  
one chooses to impose ( 0  2.6). 

Often we shall restrict our considerations to homogeneous recurrence relations, for 
which Pj = 0 (or, equivalently, L = - 1). These are designated simply by 

M = [MO, MI, . . , , M,] = [MO, MI,  . . . , MK ; - 11. (8) 
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In  this case equation (2.4) becomes 

and we deduce from &[col = 0 that Qo,o = 0. 
By repeating the above procedure for all [M, L ]  for which N S N with K fixed, one 

obtains a (K + 2)-dimensional array of recurrence relations (3) for the coefficients c, ; 
similarly, for homogeneous recurrence relations one obtains a ( K  + 1)-dimensional 
array. This is a natural generalisation of the Pad6 table. 

2.2. Approximate representations 

Once the coefficients {Qi,j, Pj}  defining the recurrence relation (3) have been deter- 
mined, one can generate additional series coefficients E,(n > N )  by recurrence, suc- 
cessively solving 

R~,=[;nl= 0 ( n  > N )  (10) 

for t,,. In this way a recurrence relation [MO, M I ,  . . . , MK; L ]  together with the known 
series coefficients c,(n = 0, . . . , N) implicitly define a representative function $M,L(z),  
whose series expansion agrees with equation (1) at least through terms of order N :  

(11) Ic/(z) = 4 M , L ( Z )  + O(ZN+') .  

Thus the recurrence method yields implicitly an array of approximate representations 
of the function 4 ( z )  (integral approximants). Additional representations of GM,= will be 
discussed in 5 2.7. 

We remark that this procedure also provides a mathematical tool for extending 
sequences of numbers with complex internal regularities, or for deducing exact recur- 
rence relations, as in the theory of special functions. 

2.3. Differential equation approximants 

It is readily verified that the function +bM,=(z) constructed above is a solution of a linear, 
inhomogeneous, Kth-order differential equation 

which we term a differential equation approximant. The polynomial coefficients in 
equation (12) are 

and the driving term is 

L 
P ( z ) =  2 Piti. 

j = O  
(14) 

By inspection, K = 0 approximants correspond to standard [LIMO] Pade approxi- 
mants (Baker 1974). Similarly, K = 1 approximants are equivalent to [MO- l/M1] 
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Dlog Pad6 approximants (Baker 1961), 

In view of this correspondence, the notation (Fisher and Au-Yang 1979, Hunter and 
Baker 1979) 

[LIMO; Mi, . . . , M K ] ”  [MO, Mi,. . . , M K ;  LI (16) 

has been proposed, though a reversed ordering, as in [ M I ,  . . . , MK ; L/MO] ,  might 
sometimes be preferable. 

The use of the differential operator A = z(d/dz), rather than (d/dz), considerably 
simplifies the structure of the recurrence relations. This form is also naturally suited 
(Hunter and Baker 1979) for obtaining Neville extrapolants with the method. A 
possible drawback is that the point z = 0 is generally forced to be a regularsingularpoint 
of (12). This constraint can be removed by constructing recurrence relations from a 
differential equation written in ‘standard form’, 

M where W,(z)  = Xj=l0 Wl,jz’ are polynomials of degree MI. Our preliminary investiga- 
tions with such recurrence relations did not reveal any advantage over those discussed 
above, but this remains a topic for further study. 

We note that if equation (12) is written in standard form the polynomials Wdz) are 
O(z’) and given by 

K 

i = /  
W ~ ( Z )  = 2’ S! ’ )Q~(Z )  

where Sj” are Stirling numbers of the second kind. 

2.4. Analysis of critical points and critical exponents 

The singular behaviour of the approximants GM,=(z)(K 3 1) can be determined by 
applying standard techniques from the theory of differential equations (Whittaker and 
Watson 1927, Ince 1927) to the differential equation approximants (12). Our treat- 
ment below is not intended to be exhaustive. We emphasise at the outset that it is not 
necessary to evaluate the integrals $M,L to determine either the critical points or the 
corresponding critical exponents; however, a suitable integration is required to obtain 
critical amplitudes (see 0 2.7). 

The singular points z ,  of the ‘general solution’ to the differential equation (12) are in 
general given by the MK zeros of the polynomial Q K ( z ) ,  z = z ,  ( i  = 1 , .  . . , M K ) ,  
together (usually) with points zo = 0 and zm = a, which we examine separately. 

Let us first consider the case in which these zeros are distinct and in which the 
polynomials Q,(i = 0, . . . , K )  have no common factors. Thzse conditions usually 
prevail in most numerical calculations. Under these circumstances the zeros z ,  are 
regular singular points of the differential equation. The K critical exponents defined at 
each point z ,  (al ,  PI,  . . . ) are associated with the independent solutions +hl(z) = 
A , ( Z ) ~ Z  - zIIcii of the homogeneous differential equation and are determined by the 
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indicial equation at zi. In the present case there is only a single non-vanishing exponent 
given by 

Q, = K - 1 - QK-1(Zi)/ZiQX(Zi) (19) 

while the remaining K - 1 exponents are identically zero. Thus the general solution 
(Ince 1927) has the form 

where A i ( z )  is analytic at zi, and B ( z )  is analytic (K = 2; K = 1, Lz-0), or contains 
analytic functions together with powers of logarithms (K > 2), or vanishes (K = 1, 
L = - 1). Thus the recurrence method is naturally suited for functions with cusp 
singularities (ai > 0) or with weak, divergent non-factorisable singularities. 

2.5. Confiuent singularity analysis 

Let us now consider a function with a finite number N, of confluent power-law 
singularities at a given point z,, as in equation (2). We shall assume that no pair of the 
associated exponents differ by an integer and that none is a positive integer or zero. A 
differential equation which faithfully accounts for the singular structure in such a 
function must have degree K k N,, with common zeros in all the polynomials Q , ( z )  with 
j > K - N,. In particular, the conditions are that Q j ( z )  = O[(z - z , ) ~ ~ + ' - ~ ] ,  or 
equivalently, 

(21) 0 = Qj(z, )  = Q;(Z,) = . . . = Qj"(z,) (i ' K - Nc) 

where m = N,+j-K - 1. A point at which the confluence (21) holds is also a regular 
singular point of the differential equation (12). However, in this case the analysis of the 
critical exponents generally involves an indicial equation of degree N,, rather than one 
as simple as in equation (19). 

In the case of two confluent singularities, for example, z ,  will be a double zero of 
Q K ( z )  and a single zero of Q K - I ( z ) ,  K 3 2. Thus, the indicial equation reduces to a 
form quadratic in the critical exponents, 

(22) 
Z 2  

(CU + 2-K)(a  + 1 - K ) 2 Q k ( ~ c ) +  (a  +~-K)z,Q(K-~ (z,)+ QK--2(zc) = 0. 
2 

From the two solutions of equation (22) one obtains estimatesfor the critical exponents 
cu and p, for each approximant, while the remaining K - 2 exponents, if any, are zero. 

The result of this analysis is that the singular behaviour of (cIM,L(z) at z ,  in this case 
( N ,  = 2) is given by 

+.,,,dz) 2 ~ 2 c ~ ( z ) l z  - zclp -t-B(z)iz - zcIp + c(z> (23) 

where A ( z )  and B(z) are analytic at z ,  and C ( z )  is analytic (K = 3; K = 2, L 3 0), or 
contains powers of logarithms (K > 3), or vanishes (K = 2, L = - 1). 

In practice the roots of QK(z )  determined by the recurrence relations (3) are seldom 
degenerate. However, closely spaced zeros in Q K ( z )  are then symptomatic of confluent 
singularities in t,b(z). As the derivative coefficients in the indicial equation (22) are 
generally non-zero and smoothly varying near z,, provided that the spacing between the 
pair is sufficiently small and no other zeros are nearby, we may expect that the solutions 
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of equation (22) at either zero will still yield good approximations of a and p. To see this 
consider the structure of a differential equation (12) as two critical points z l  and z2 
coalesce. The polynomial Q,(z) must factor as ( z  -- zl)(z - z2 )  . . . ( z  - zK), so that 
Qk(zl or z2 )  = Q(zl - z2) ,  which vanishes as z1 -+ z 2 .  Since the indicial equation (19) is 
valid for z1 f z2 ,  one deduces that Q K - l ( ~ I  or z2)  = O(zl - z2 )  also. Thus the criterion 
(21) for the confluence of two singular points is satisfied with an error of O(zl - z2) .  
Similarly, by substituting into the homogeneous differential equation the solution 
$ ( z )  = ( z  - z,)*[l+ a l (z  - zc)+.  . .I, zc = z1 or z2, one finds (cf equations (27)-(30)) that 
the critical exponent a satisfies an indicial equation of the form (22), but with 
coefficients differing only by terms containing Qk(zc) and QK-l (z , )  which are Q(zl - 
z2) .  Thus, barring identical exponents, the solution to the indicial equation (22) in the 
case of closely spaced singular points should yield ‘effective exponents’ which differ 
from the correct values by an amount of Q(zl - z7).  In any case, this procedure yields 
two estimates of each of the critical exponents and therefore provides a natural 
consistency check. 

By a straightforward generalisation of these results we see that a solution with N, 
confluent power-law singularities requires the determination of at least Nc+ 1 poly- 
nomials {Q,(z), p ( ~ ) } .  Thus the procedure can become expensive in the number of 
exact series coefficients required. Also, €or a limited number of exact coefficients, one is 
restricted to increasingly smaller-degree polynomials for increasingly larger K, but in 
compensation a larger number of approximants can be defined. 

A similar analysis for the singular point zo = 0 generally yields K(or K - 1 if L =: - 1) 
confluent power-law singularities. The analysis at zm = CO can be more complicated. 
However, if MK = M, za, is also a regular singular point and a similar analysis holds. 
Also in this case one can usually establish a sum rule on all the critical exponents. 

Finally, we note that it is possible to consider many other types of singularities within 
the present framework. For example, certain essential singularities are defined by the 
condition that & ( z )  has a double-zero at a point z ,  where QK-l(z,) is non-zero. 
However, many singularities, such as fractional powers of logarithms, cannot be 
described in terms of a finite-order linear differential equation with polynomial 
coefficients. 

2.6. Biased approximanzs 

As in many other series analysis techniques, it is possible to obtain biased estimates of 
critical points and critical indices by fixing a priori the locations of one or more singular 
points, possibly together with one or more of the corresponding critical exponents. 

In the present method singular points z ,  with or without confluent singularities are 
easily specified by imposing the conditions that the polynomials Q , ( z )  have zeros of 
appropriate multiplicity (equation (2 1)). These constraints lead to additional linear 
equations which must be satisfied by the recurrence relation coefficients {Q,,,} For 
example, to fix the location of an isolated singularity, one sets 

Similarly three equations are needed to specify each singular point with two confluent 
power-law singularities, etc. 

Critical exponents may be specified simply by forcing the indicial equation (equa- 
tions (19), (22), or an appropriate generalisation if Nc>2)  to be satisfied exactly at a 
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specified singular point. This leads to a single additional linear equation for each 
specified critical exponent which must be satisfied by the coefficients { Q,,,}. 

Note that biasing the differential equation approximant reduces the number of 
series coefficients required to define a given approximant, such reduction being equal to 
the number Nb of additional equations satisfied by the coefficients {Q,,], P,}, 

(25) 
where N, is the number of specified isolated singular points, Nd is the number of 
specified points with two confluent singularities, etc, and N, is the number of specified 
critical exponents. Note that if z ,  is complex, equation (24) yields two independent 
constraints, but zf will also be a singular point if {a,,,, PI} are real. 

Nb = N, + 3Nd + N, 

2.7. Critical amplitudes 

While the recurrence method does not yield direct estimates of the critical amplitudes, 
A, in equation (2), these quantities are defined implicitly for a given approximant by the 
series coefficients c,. The following procedure based on recurrence techniques yields 
these amplitudes without the necessity of numerical integration. 

Let us define the critical amplitudes as the coefficients Ai of the normalised 
independent solutions a i ( z  - z,) in the general solution of the differential equation (12) 
in the vicinity of a singular point z,, 

By means of recurrence relations similar to ( 3 )  one can generate series developments of 
these solutions to arbitrarily many terms; these recurrence relations are defined 
uniquely for a given approximant. The critical amplitudes are then obtained by 
matching successive solutions, moving away from the origin, as in the process of analytic 
continuation. 

As an example, consider the closest singularity to the origin for a second-order 
homogeneous approximant. Let 

be the independent solutions to (12), with 
coefficients 

1 and ~ , - ~ = O ( j > 0 ) ( 1 =  1,2) .  The 
in (27) satisfy a recurrence relation 

in which the coefficients Q:,: are simply related to the recurrence coefficients Q,,, 
constructed previously. Defining these coefficients implicitly in terms of polynomials 
Ql,&(z) ,  as in equation (13), 

M ,  

j = o  
Q/, , (z)  = C Qf,:(z - ZJ (29) 

the correspondence is 
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For the singularity closest to the origin there exists an intermediate point )zml < Izcl 
where both the expansion about the origin (kM(z) and the newly constructed represen- 
tation $K are convergent. The critical amplitudes are then determined by the equations 

2.8. FORTRAN program 

We have incorporated into a single FORTRAN program all of the generalisations of the 
recurrence method described above for treating up to two confluent singularities at each 
singular point ( z  = 0, excepted). Each desired differential equation approximant is 
specified by a set of integers, [MO, M I ,  . , . , M K ;  L] ,  together with, if desired, a set of 
auxiliary conditions and input data necessary to construct biased approximants. For 
each approximant, the program then determines the recurrence coefficients { Qi,,, P,}, 
the singular point locations, and the value of the associated critical exponent at each 
singular point given by the indicial equation (19). If two singular points are closely 
spaced (or identical, as in biased estimates) the program then determines two critical 
indices from the quadratic indicial equation (22), as discussed in § 2.5. The criterion 
presently used in the program to decide whether two singularities are closely spaced is 
that lQk(z,)i be less than a small constant, typically set at 0.01 (the quantity Q ~ ( z , )  = 
O(Azc) where Az, is the spacing between nearly confluent singular points). The validity 
of this criterion may be checked by examining the singularity map. An alternative 
criterion would involve the normalised quantity [Q~(z,) /z,Q;IXz,) ]  = O(Az,/z,); 
however, this would necessitate a calculation of Q;IXz,) at all singular points, confluent 
or not. The interpretation of results is discussed in previous parts of §§ 2 and 3. The 
program also has a provision for generating the series coefficients E,  defining the 
approximants $M,L(z) .  Some additional details are mentioned by Guttmann (1975). 

3. Test functions 

In this section we carry out a number of tests of the method on functions known to have 
confluent, power-law singularities. 

3.1. Hypergeometric-type test functions 

We consider first functions formed from the sum and product of two hypergeometric 
functions. These test functions, labelled by the subscripts A and B, respectively, are 
defined as 

and it is a straightforward matter to generate large numbers of series coefficients. The 
analytical structure of these functions (see, for example, Whittaker and Watson 1927) 
near the singular point at z = 1 is as follows: 

$ A ( z )  = A,(z) + All1 - ~ 1 - ” ~ +  A2(~)11-  ~ 1 - ~ ’ ~  ( 3 5 )  
z + l  
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I ( ~ ~ ( z )  = B ~ ( z ) + B , ( z ) ~ I  - ~ 1 - ~ / ~ + ~ ~ ( ~ ) 1 1  - z I - ~ / ~ + B ~ ( z ) I ~  - ~ 1 ~ / ~  
z+l 

where Ai( z )  and Bi(z) are analytic at z = 1. The results of our analysis are summarised 
below. 

3.1.1. Critical point location. We found the differential equation approximants 
(labelled RR in table 1) for K = 2 and 3 to be markedly superior to the Dlog Pade 
approximant ( K  = 1, labelled DP) for determining the location of the critical point at 
z = 1. Typical comparisons are given in table 1. The accuracies quoted refer to the 
logarithm of the relative error E = - log AzC/zc, and numbers in parentheses refer to the 
number of series coefficients in addition to co (N in equation (9)) used to construct a 
given approximant. All of these tests were performed with unbiased, homogeneous, 
‘diagonal’ [M, M, . . . , MI approximants. 

Table 1. Comparative accuracies of estimates of the location of the critical point z ,  = 1. The 
numbers quoted are values of ~ ( z , )  = -log(Az,/z,) and (in parentheses) N, the number of 
series coefficients used. 

Test DP RR RR 
series ( K  = 1) (K = 2) ( K = 3 )  

A 1.8(4) 
3.2( 10) 
4*0(18) 
4.6(28) 

B 1.8(4) 
3.3( 10) 
4.2(18) 
4.8(28) 

2.8(4) 
3.8( 10) 
5.6( 19) 
6.6(28) 

2.7(4) 3.6(5) 
4*2( 10) 5.3( IO) 
5.2( 19) 5.6(18) 
6.0(28) 6.3(25) 

3.1.2. Dominant critical exponent. Next we examine the estimates of the dominant 
critical exponent y1 = - cyl  (exact value y1 = 1.25). We found both the Dlog Pad6 and 
the original recurrence method to give poor results for y1 (table 2 ,  columns DP and 
RR). This is to be expected, considering the presence of the confluent singularities in 
these functions. For the longest series used, the performance of the Dlog Pade was 
slightly better than that with K = 2 approximants. 

Table 2. Accuracies of estimates of the dominant critical exponent y ,  (exact value 1.25). 
The numbers refer to ~ ( y , )  = -log(Ay,/y,) and (in parentheses) N, the number of series 
coefficients used. 

Test DP RR GR GR 
series (K = 1) (K = 2) ( K = 2 )  (K = 3) 

A 1*5(10) 1.8 (1 0) 2.3(13) 2.9( 14) 
1.7(18) 1.4(13) 4.8( 19) 6.2(18) 
1.9(28) - 4.2(28) 5.1(26) 

B 1.5(8) 1.9(7) 1.4(13) 2 . 3  14) 
1.9( 18) 2*0(19) 3.1( 19) 3.9(18) 
2.2(28) 1.7(28) 3.9(25) 4.5(26) 
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3.1.3. Confluent singularity analysis. In the columns labelled GR (for generalised 
recurrence method) of table 2 ,  we list some unbiased estimates of the dominant critical 
exponent y ,  as determined for a given approximant from the quadratic indicia1 
equation. Comparison with columns DP and RR indicates that the confluent singularity 
analysis significantly improves the exponent estimates and provides good estimates 
even for rather short series. 

Estimates of the leading confluent critical exponent y2 = - a2 (exact value 0.75) are 
given in table 3. For K = 2  we find that y2 is reasonably well determined for test 
function A. This is remarkable, as a homogeneous differential equation of third order 
or greater is required to describe the singular structure of this function at z = 1. For test 
function B the accuracy with K = 2 approximants is much poorer, apparently as the 
result of interference of the weak confluent singularity with exponent y 3  = --;. These 
results suggest that biased estimates or approximants with K 1 2  may be advantageous 
if a function has more than two confluent singularities at a given point. This is borne out 
by examination of the K = 3  approximants, The above bests were all made with 
homogeneous, diagonal approximants. 

Table 3- Accuracies of estimates of the confluent exponent y2 (exact value 0.75). The 
numbers refer to E ( Y J  = -log(Ay,/y,) and (in parentheses) N, the number of series 
coefficients used. Unbiased estimates are designated by a superscript U.  In the biased 
estimates: I, z,= 1.0; 11, z ,=  1.0, y i  = 1.25. 

Test CRL' GR" GR1 GR' GR" GR" 
series ( K - 2 )  ( K = 3 )  ( K = 2 )  ( K = 3 )  ( K - 2 )  ( K - 3 )  

A 1.7(13) 2,@(14) 3.0(10) 
2.7(19) 6.7(18) 3.8(19) 
3.3(28) 5.7(26) 3.5(25) 

3.3(9) 
4.7(18) 
3.7(24) 

B 0.8(13) 1.5(14) 1.3(10) 2.4(11) 1.5(9) 2.9( 10) 
1.1(19) 2.4(18) 1.8(19) 3.4(19) 2.2(18) 4.7(18) 
1.7(28) 3.3(26) 2.3(28) 5.5(27) 2.7(27) 5.1(26) 

3.1.4. Biased approximants. The remaining columns in table 3 illustrate the substantial 
improvement in the estimates of y2 when the approximants are biased. We consider 
two cases: (i) when the critical point z = 1 is specified, or (ii) when both z = 1 and 
yI  = 1.25 are specified, Note that for test function A,  y 2  is determined quite well with 
K = 2 approximants, while for test function B the K = 3 approximants are significantly 
better. 

Finally, to determine the stability of these biased estimates, the specified critical 
parameters were varied slightly from their exact values (figure 1). We observe that the 
behaviour of the dominant exponent y1 is much more stable than is y 2 .  Note too that a 
small deviation of a critical point location or an exponent from its exact value 
dramatically increases the scatter among the various estimates. This suggests a way of 
obtaining accurate estimates when the precise singular point location is not known, 
which we will exploit in the next section. 

3.2. Triplet-spin Ksing model 

As a third example we have performed an analysis parallel to that above for the internal 



1598 J J Rehr, G S Joyce and A J Guttmann 

o a  o a  
72 72 

06 06 

-2 0 2x105 -2 0 2 x 1 0 5  

t 4 o a  

12L6 U O L  x 
07L 076 125 126 

Y2 Y1 

Figure 1. Stability of biased estimates with respect to a small change in z, [parts ( a )  and ( b )  
for I)* and respectively]; yz,  part ( c ) ;  and y , ,  part ( d ) .  

energy series U ( u )  of the triplet-spin king model on a triangular lattice. The zero-field 
free energy A(T)  for this model is exactly soluble (Baxter and Wu 1974, Baxter 1974) 
and its analytic properties have been investigated by Joyce (1975a,b), who showed that 

(37) 
1 1 4 1 6 u ( l - ~ ) ~  

A(T)  = - 2 J +  kBT In (1 + U)-’ zFi(- -. -. 
2’ 6’ 3’ (1 + u ) ~  

where U = exp( - 2J/kB T ) .  We have used this exact solution to generate a large number 
of series coefficients for the internal energy series (Joyce 1975a,b). Itfollows from (7) 
that the analytic behaviour of U ( u )  near the critical point U, = 3 - 2J2 is given by 

U ( u )  = Ao(u)+A,(u) (u  - u , ( ” ~ + A ~ ( u ) ( u  - u y 3  (38) 

where Ao(u), A,(u) and A2(u)  are analytic functions at U = U,. Our analysis is briefly 
summarised below. 

3.2.1. Unbiased approximants. As in the previous examples, the unbiased differential 
equation approximants with K = 2 and 3 were found to be markedly superior to the 
Dlog Pad6 approximants ( K  = 1) in determining the location of the critical point. With 
about 20 series coefficients these approximants gave values of €(U,) = -log(Au,/u,) of 
2.0, 5.4 and 6.5 for K = 1, 2 and 3, respectively. 

The estimates of the dominant critical exponent were also striking. The estimates 
for the K = 1. approximants decayed very slowly toward zero, a value appropriate to the 
analytic part of U !  Even with 40 series coefficients the exponent estimates were about 
-0.1. By comparison the exponent estimates for K = 2 and K = 3 approximants were 
a ,  = 0.3340 and 0.3337, respectively, using only 16 series coefficients. The poor 
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performance of the homogeneous K = 1 approximants is to be expected for this class of 
function, as discussed in §§ 2.4 and 2.5. Interestingly, for sufficiently high degree 
approximants a nearly degenerate pair of zeros in QK was indicated by approximants of 
orders K = 1, 2 and 3. 

3.2.2. Biased approximants. Next, biased estimates of exponents were obtained by 
specifying the position of the critical point at U ,  = 3 - 2d2 to be a double-zero of & ( U ) .  
Some results are presented in tables 4 and 5 .  Clearly the two exponents are converging 
to f and zero for the K = 2 approximants. This is a particularly interesting example as it 
shows that for K = 2 the two dominant contributions to the function are 'selected' by 
the method, even though one of these is analytic. From the discussion in § 2.5, a 
differential equation approximant of third order (or an inhomogeneous approximant of 
second order) is required to fit the singular structure of (38). Thus, with the K = 3 
approximants the full structure of the function is revealed: the exponents are clearly 
converging to cy1 = f and c y 2  = 5. The behaviour is similar for biased estimates in which 
both U ,  and the dominant exponent are specified. 

Table 4. Biased estimates of the critical exponent a 1  (exact value f )  for the internal energy 
series of the triplet-spin k ing  model, with U, = 3 -242. The numbers quoted are € ( a I )  = 
- log(hal /a l )  and (in parentheses) N, the number of series coefficients used. 

DP GR GR 
( K  = 1) ( K = 2 )  ( K = 3 )  

-0,2(9) 1.4(10) 2.3(11) 
-0.1(15) 2.3 ( 16) 3.2(15) 
-0.1(21) 3.2(2.5) 4.8(27) 

Table 5. Biased estimates of the confluent exponents a2 = $or a(I = 0 (Knalytic term) for the 
internal energy series of the triplet-spin k ing  model. In I, U, = 3 - 2J2 ;  in 11, U, = 3 - 242 
and a 1  = f .  The numbers refer to € ( a o )  = -log hao or € ( a 2 )  = - log(Aa2/az);  those in 
parentheses refer to the number N of series coefficients used. 

2.4(10) 2.9(9) -1.8(11) -1.4(10) 
3.4( 16) 4.1(15) 0.5(15) 1.5(14) 
4.6(25) 5.1(24) 1,4(27) 1,3(26) 

4. Spin-oo king models 

In this final section we discuss the application of the generalised recurrence method to 
the problem of determining the correction-to-scaling exponents for the spin-oo king 
model on an FCC lattice. In addition, we compare the results with those obtained by 
other methods. The series expansions analysed here are high-temperature series of 12 
terms for the zero-field susceptibility x ( t )  and for the second moment of the spin-spin 
correlation function M 2 ( z ) ,  where z = J / 3 k B T .  These series have been the object of 
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detailed analyses (Saul et a1 1975, Camp and Van Dyke 1975, Camp et al 1976) based 
on several methods of confluent singularity analysis, including the generalised ratio 
method, the Baker-Hunter transformation, and the method of four-fits. In this respect 
these series represent interesting cases for quantitative comparisons of our method. 

One of the difficulties of treating these series is their short length. Another is that 
none of the critical parameters is known exactly, although y1 for the susceptibility series 
is believed to be very close to 1.25. We have therefore attempted to determine the 
critical point and the corresponding critical indices by making biased estimates as 
discussed in the two previous sections. The other methods of confluent singularity 
analysis mentioned above are also biased. Specifically we obtain estimates for the 
leading confluent exponent.y2 by fixing y1 and varying zc  as in figures l (a )  and (b ) .  
Since longer, fairly well-behaved susceptibility series are available for the spin-; Ising 
model (Sykes et a1 1972, McKenzie 1975) which give y1 = y = 1.25-o.oo5, we shall adopt 
for ,y the values y1 = 1.250 or 1-245. For the second moment series we use y1 = 
y+2v  = 2.526 or 2.520 based on the values y = 1.250 and v = 0.638-0.008 (Camp et a1 
1976). For comparison the Baker-Hunter method requires a given value of z,, and 
both the generalised ratio method and the method of four-fits fix y1 to determine y2. 

Our results are summarised in figures 2(a) and (b), for representakive [MO, MI, M2]  
approximants using between 9 and 11 series coefficients (the twelfth terms of these 
series both give erratic estimates which are not included). The overall consistency of 
these results is noteworthy and provides a rough estimate of the accuracy that is possible 
with the generalised recurrence method. Table 6 lists the values of the critical 
parameters in figures 2(a) and ( b )  for which the scatter among the various approximants 
is minimal. In comparison with our values of z, between 0.095033 and 0.095042, the 
generalised ratio method for the ,y series yielded 2, = 0.095043 while the method of 
four-fits gave 0.095025 for ,y and 0.09506 for M2.  Since the correction to scaling 
exponent is A I  = y1 - y2 we find that A I  = 0.5 (for fixed y = 1.250, y + 2v = 2.526) and 
A l  -0.55 (for fixed y = 1.245, y + 2 v  = 2.520). These values are in rough agreement 
with the results of Saul et a1 for x, A l  = 0-5  f 0.05 (method of four-fits); with those of 

+0.002 

+0.002 

I I I I I 

(01 

2 L x10-5 
Z ,  -0.09500 

2.1 

Y,  1.9 

1.7 

0-6 
A1 

0.8 

2 L 
Z, -0.09500 

Figure 2. ( a )  Estimates of yz  for the susceptibility ,y series plotted against a range of values 
of I,. Straight line segments indicate estimates with y,  = 1.250; broken lines y ,  = 1.245. 
The exponent A,  = y 1  - y2 .  ( 6 )  Estimates of y2 for the second moment M2 series plotted 
against I,: straight lines indicate y1 = 2.526; broken lines y ,  = 2.520. 
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Table 6. Confluent singularity analysis for the FCC spin-co Ising model. A superscript a 
denotes a fixed value. 

Series Y1 YZ A1 2, 

X ( Z )  1.250" 0.78 0.47 0.095 038 
1.245" 0.70 0.55 0.095 033 

M A z )  2.526" 2,Ol 0.52 0,095 042 
2.520" 1.97 0.55 0.095 03Y 

Camp etal for M2, A I  2 0.6 f 0.1 (Baker-Hunter method, and method of four-fits); and 
with the results of Camp and Van Dyke for x, AI = 0.57 (generalised ratio) and 0.55 
(Baker-Hunter). These results indicate that with a limited number of coefficients the 
generalised recurrence method can yield accuracies roughly comparable to that of 
currently used confluent singularity analysis methods. While not an improvement on 
these methods the generalised recurrence method has the advantage that only linear 

. equations are involved in the analysis and that a global representation of the function is 
obtained. On the other hand, this method does not yield critical amplitudes directly 
(see 0 2.7). Since significant improvements should be possible with longer series, we 
hope these results will encourage others to extend the Ising model series. 
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